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ABSTRACT: The multi-terminal high voltage direct current

(HVDC) and DC grid technology based on the traditional 2012 6 52.58x
HVDC and voltage sourced converter HYDC (VSC-HVDC) is 10° GW
one of the valid approaches which can resolve the problems of 4 GW

renewable energy integration in China. The background of the
development of the DC transmission was analyzed and the e voee v
two-terminal HVDC technology was overviewed in this paper.
The basic concepts of the multi-terminal HYDC and DC grid
were discussed. Combined the differences and relations
between them, and their respective characteristics, the key
technical issues to be resolved, cause of these problems and the
research progress of building the DC grid in future were
indicated, from which the thoughts and suggestions for the DC

grid technology direction were put forward.
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Tab.1 Major AC voltage levels in the world and
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Tab.2 Contrast of AC and DC transmission technology

HvDC

2
2.1

LCC) HVDC
HVDC
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(+800 KV/4.5 kA)

2.2

IGBT)

modulation PWM)
(voltage source converter VSC)
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1100kV HVDC
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70%
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Tab. 3 Contrast of LCC and VSC technology
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Tab. 4 General situation of operating MTDC
transmission projects in the world
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Fig. 2 Topology diagram of GBX hybrid HVDC
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Fig. 3 Structure diagram of multi-terminal HvVDC
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Fig. 4 Diagram of DC grid’s stage of development
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The multi-terminal high voltage direct current
(HVDC) transmission and DC grid based on line
commutated converter HYDC (LCC-HVDC) and voltage
sourced converter HVYDC (VSC-HVDC) technologies
are considered as two effective means to resolve the
problems with renewable energy integration in China.

Modern HVDC technology has overcome the
bottleneck of early DC transmission and gone through
three stages: mercury arc valve, thyristor valve and
self-turn-off devices. Compared with AC transmission,
HVDC technology has some advantages such as no
power- angle stability issue, high transmission efficiency,
quick and reliable adjustment, less requirement of right-
of-way. LCC-HVDC is suitable for long-distance and
high-capacity power transmission, while VSC- HVDC is
preferred for renewable energy integration and power
supply for islands. Besides, VSC-HVDC technology is
proper for constructing a multi-terminal HVYDC system
owing to the fact that it can achieve power reversal
without changing voltage polarity. Compared with
multi-terminal DC systems, DC grid has such advantages
as fewer converter stations, more flexible transmission
adjustment, and higher reliability.

Multi-terminal DC transmission is currently in the
initial stage of DC grid evolvement, in which more than
three converter stations are connected in series, parallel
or hybrid mode and can achieve the multiple power
supply. A “one-point-to-multi-point” and “multi-point-
be by
interconnecting transmission lines on the DC side, thus

to-one-point”  system  will developed
constituting an actual DC grid, as shown in Fig. 1 (b).
Each AC system is connected to the DC grid via a

converter station; converter stations are interconnected

S2

via DC lines serially connected with circuit breakers. In
the event of a fault, the lines or converter stations can be
disconnected selectively by circuit breakers to prevent
the cascading faults.

AC1 AC3 AC1 AC3
AC2 AC4 AC2 AC4
(a) Multi-terminal HVDC system (b) DC grid

0 Converter station; m DC circuit breaker

Fig. 1 Multi-terminal HVDC topology

To overcome the challenges in constructing a DC
grid, many supporting technologies are needed, such as
simulation technology, control technology, protection
technology, wide area measurement, fault detection
technology, reliability assessment techniques, DC grid
standardization, and key equipment development like
high voltage circuit breakers, DC/DC converters. Though
there are some similarities between DC grid technology
and AC grid technology, the two technologies are
different in essence. DC grid has fewer inertial elements
and shorter response time compared with AC grid by at
least two orders of magnitude, and therefore related
technologies in the AC grid cannot be used directly and
need to be re-examined.

The next decade will see a rapid development of
DC grid technology and construction, which will
eventually help shape the backbone of China’s power
grid featured by strong AC and strong DC hybrid

interconnection.



