39 22

Vol.39 No.22  Nov. 20,2019

6600 2019 11 20 Proceedings of the CSEE ©2019 Chin.Soc.for Elec.Eng.

DOI 10.13334/j.0258-8013.pcsee. 182117 0258-8013(2019) 22-6600-17 ™ 77

) 430074)

Review of DC Fault Protection Methods for the MMC Based DC Grid
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ABSTRACT: This paper systematically analyzed the key
technical issues of DC line protection methods for the overhead
MMC based DC grids. Firstly, the technical requirements of the
DC grid line protection were presented. Then, the fault
characteristics of DC grids were analyzed and the protection
methods between MMC based DC grids and other systems
were compared. Further, various protection methods dedicated
for the MMC based DC grids were surveyed. In addition, the
main protection and backup protection were introduced. Finally,
the performance of typical protection methods was validated
and compared by extensive simulations in PSCAD/EMTDC.
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The overhead MMC based DC grid is an effective
solution for renewable power integration over long
distance. To deal with DC faults, the high power DC
circuit breakers (DCCB) are implemented on the
overhead lines. Since the fault current rises rapidly with
a large amplitude, DCCBs are required to trip within a
few milliseconds, which poses a strict requirement for
the fault detection method. This paper systematically
analyzes the key technical issues of DC line protection
methods for the overhead MMC based DC grids. Firstly,
the technical requirements of the DC grid line protection
are presented. Then, the fault characteristics of MMC
based DC grids are analyzed and the protection methods
between MMC based DC grids and other systems are
compared. Further, various protection methods dedicated
for the MMC based DC grids are surveyed. In addition,
the main protection and backup protection are
introduced. Finally, the performance of typical protection
methods are validated and compared by extensive
PSCAD/EMTDC. The

conclusions are as follows:

simulations  in relevant

1) The protection of DC grids requires high
speediness and selectivity, so the conventional protection
schemes for LCC-HVDC and AC grids are not
applicable to the protection of DC grid. In order to
improve the sensitivity to high resistance faults, voltage
measurement and frequency domain analysis are most
used to design the criterion. Noise and lightning are two
main factors that will affect reliability. The higher the
sampling frequency, the higher the protection accuracy.
However, the sampling frequency is limited by the
hardware device.

2) Time-domain analysis is simple in principle and
easy to implement, but not reliable; the principle of
frequency domain analysis is complicated, but the
sensitivity and reliability to high resistance faults are

improved.
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3) The protection scheme based on the traveling
wave is simple and has good engineering experience, but
has poor reliability. The protection scheme based on the
wavelet transform and other mathematical tools are
robust to resistance, but they are easily affected by the
noise. The protection scheme based on boundary
conditions overlaps with the first and the second type of
protection schemes. For the protection scheme of the
reactor voltage and capacitor current, the principle is
simple and the reliability is high. The protection scheme
based on the intelligent algorithm avoids the complicated
setting process and calculation process, and improves the
protection performances, but its engineering practice is
poor, and the training process of weight and threshold is
complex, which is in the preliminary research stage

4) The protection scheme based on the improved
NROCOV, Ap Ejand Vi can meet the requirements of
speediness, and can identify different types of faults and
are suitable for different operation modes. The protection
scheme based ¥, has poor sensitivity for resistance fault,
and the largest resistance identifying is 100 Q. The
protection scheme based on NROCOV and E, has the
poor anti-interference ability.

5) The fundamental reason for the challenges faced
by the protection system of the dc grid is the weak
performance of semiconductor devices, current-limit
reactor and DCCB. In terms of protection research, most
protection principles are not strong, and the setting value
is mainly obtained through simulation. The analysis of
factors that influences protection performance is not
deep enough, and there are few studies on lightning
strike and noise interference. In addition, there are few
studies on the backup protection. Most of backup
protections remain at the research level of pilot
protection, and the time coordination and setting value
coordination of the main and backup protection are not

perfect.



